Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides.
نویسندگان
چکیده
Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N₂ adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H₂. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO₂ ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO₂ and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen.
منابع مشابه
Effect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملSustainable selective oxidations using ceria-based materials
This Perspective covers sustainable oxidation processes using doped cerias, ceria-supported catalysts and ceria-based mixed oxides. Firstly, we consider the general properties of ceria-based catalysts. We outline the advantages of the ceria redox cycle, and explain the dynamic behaviour of these catalysts in the presence of metal additives and dopants. We then review three types of catalytic ox...
متن کاملA combined DFT + U and Monte Carlo study on rare earth doped ceria.
We investigate the dopant distribution and its influence on the oxygen ion conductivity of ceria doped with rare earth oxides by combining density functional theory and Monte Carlo simulations. We calculate the association energies of dopant pairs, oxygen vacancy pairs and between dopant ions and oxygen vacancies by means of DFT + U including finite size corrections. The cation coordination num...
متن کاملNear-ambient XPS characterization of interfacial copper species in ceria-supported copper catalysts.
Catalysts based on combinations of copper and cerium oxides are interesting alternatives to noble metal ones for processes involved in the production/purification of hydrogen produced from hydrocarbons or biomass like the water-gas shift or the preferential oxidation of CO reactions. Active sites for such processes have been proposed to correspond to reduced species formed at the interface betw...
متن کامل2010 PIRE - ECCI P . I . Planning Meeting Dalian , China Sept 8 - 10 , 2010
We are interested in catalysts consisting either of substitutionally doped oxides (e.g. RuxCe1-xO2) or of submonolayers of an oxide supported on another oxide (e.g. VOx supported on ceria). Calculations and experiments show that in most cases these systems are more active catalysts than the original oxide (i.e. ceria). We use theory to try to find general patterns governing the activation by do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2016